SmoothieDiet

Development of molecular diagnostic methods to distinguish acerola species for quality assurance of food, dietary supplements and natural health products

  • Laurindo, L. F. et al. Health benefits of acerola (Malpighia spp) and its by-products: A comprehensive review of nutrient-rich composition, pharmacological potential, and industrial applications. Food Biosci.https://doi.org/10.1016/j.fbio.2024.105422 (2024).

    Article 

    Google Scholar
     

    Ikaria Juice
  • Uma Maheswari, M., Arumugam, T. & Lincy Sona, C. Fruits and vegetables as superfoods: Scope and demand. Pharma Innov. J.10, 119–129 (2021).


    Google Scholar
     

  • Li, D. Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. U. S. A.108, 19641–19646 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • FMI. Processed Superfruit Market Outlook from 2025 to 2035. (2025). https://www.futuremarketinsights.com/reports/processed-superfruits-market (2025).

  • Fernández-Ríos, A. et al. A critical review of superfoods from a holistic nutritional and environmental approach. J. Clean. Prod. Vol. https://doi.org/10.1016/j.jclepro.2022.134491 (2022). 379 Preprint at.

    Article 

    Google Scholar
     

  • Prakash, A. & Baskaran, R. Acerola, an untapped functional superfruit: A review on latest frontiers. J. Food Sci. Technol.55, 3373–3384. https://doi.org/10.1007/s13197-018-3309-5 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mezadri, T., Villaño, D., Fernández-Pachón, M. S., García-Parrilla, M. C. & Troncoso, A. M. Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. J. Food Compos. Anal. 21, 282–290 (2008).

    CAS 

    Google Scholar
     

  • Righetto, A. M., Netto, F. M. & Carraro, F. Chemical composition and antioxidant activity of juices from mature and immature acerola (Malpighia emarginata DC). Food Sci. Technol. Int.11, 315–321 (2005).

    CAS 

    Google Scholar
     

  • McGuffin, M., Tucker, A. & L., A. Y. J. T. K. Herbs of Commerce (American Herbal Products Assocation, 2000).

  • Duke, J. A. CRC Handbook of Alternative Cash Crops (CRC, 1993).

  • Rezende, Y. R. R. S., Nogueira, J. P. & Narain, N. Comparison and optimization of conventional and ultrasound assisted extraction for bioactive compounds and antioxidant activity from agro-industrial acerola (Malpighia emarginata DC) residue. LWT85, 158–169 (2017).

    CAS 

    Google Scholar
     

  • De Aparecida, S. et al. Antioxidant activity, ascorbic acid and total phenol of exotic fruits occurring in Brazil. Int. J. Food Sci. Nutr. 60, 439–448 (2009).


    Google Scholar
     

  • Singh, D. R. R. West Indian Cherry ñ A lesser known fruit for nutritional security. Natural Product Radiance. 5(5), 366–368 (2006).

  • Belwal, T. et al. Phytopharmacology of acerola (Malpighia spp.) and its potential as functional food. Trends Food Sci. Technol.74, 99–106. https://doi.org/10.1016/j.tifs.2018.01.014 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Paz, M. et al. Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chem.172, 462–468 (2015).

    CAS 

    Google Scholar
     

  • do Rufino, M. Acerola and cashew Apple as sources of antioxidants and dietary fibre. Int. J. Food Sci. Technol. 45, 2227–2233 (2010).

    CAS 

    Google Scholar
     

  • Motohashi, N. et al. Biological activity of Barbados cherry (Acerola fruits, fruit of Malpighia emarginata DC) extracts and fractions. Phytother. Res.18, 212–223. https://doi.org/10.1002/ptr.1426 (2004).

    Article 

    Google Scholar
     

  • Leffa, D. D. et al. Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet. Mutat. Res. – Fundamental Mol. Mech. Mutagen. 770, 144–152 (2014).

    CAS 

    Google Scholar
     

  • Horta, R. N. et al. Protective effects of acerola juice on genotoxicity induced by iron in vivo. Genet. Mol. Biol.39, 122–128 (2016).

    CAS 

    Google Scholar
     

  • Düsman, E., Almeida, I. V., Tonin, L. T. D. & Vicentini, V. E. P. In vivo antimutagenic effects of the Barbados Cherry fruit (Malpighia glabra linnaeus) in a chromosomal aberration assay. Genetics Mol. Research 15(4), (2016). https://doi.org/10.4238/gmr15049036

  • Da Silva Nunes, R. et al. Genotoxic and antigenotoxic activity of acerola (Malpighia glabra L.) extract in relation to the geographic origin. Phytother. Res.27, 1495–1501 (2013).


    Google Scholar
     

  • Düsman, E. et al. Radioprotective effect of the Barbados Cherry (Malpighia glabra L.) against radiopharmaceutical Iodine-131 in Wistar rats in vivo. BMC Complement Altern Med. 14, 41 (2014). http://www.biomedcentral.com/1472-6882/14/41

  • da Silva Nunes, R. et al. Antigenotoxicity and antioxidant activity of acerola fruit (Malpighia glabra L.) at two stages of ripeness. Plant Foods Hum. Nutr.66, 129–135 (2011).


    Google Scholar
     

  • Hanamura, T., Mayama, C., Aoki, H., Hirayama, Y. & Shimizu, M. Antihyperglycemic effect of polyphenols from acerola (Malpighia emarginata DC.) fruit. Biosci. Biotechnol. Biochem.70, 1813–1820 (2006).

    CAS 

    Google Scholar
     

  • El-Hawary, S. S., El-Fitiany, R. A., Mousa, O. M., Salama, A. A. A. & El gedaily, R. A. Metabolic profiling and in vivo hepatoprotective activity of Malpighia glabra L. leaves. J. Food Biochem. 45(2), e13588. https://doi.org/10.1111/jfbc.13588 (2021).

    Article 

    Google Scholar
     

  • Costa, A. et al. Clinical, biometric and ultrasound assessment of the effects of daily use of a nutraceutical composed of lycopene, acerola extract, grape seed extract and biomarine complex in photoaged human skin. Bras. Dermatol. 87, 52–61 (2012).


    Google Scholar
     

  • Delva, L. & Goodrich-Schneider, R. Antioxidant activity and antimicrobial properties of phenolic extracts from acerola (Malpighia emarginata DC) fruit. Int. J. Food Sci. Technol.48, 1048–1056 (2013).

    CAS 

    Google Scholar
     

  • de Miskinis, A. S., Nascimento, R. & Colussi, R. L. Á. Bioactive compounds from acerola pomace: A review. Food Chemistry vol. 404 Preprint at (2023). https://doi.org/10.1016/j.foodchem.2022.134613

  • Vilvert, J. C., de Freitas, S. T., Veloso, C. M. & Amaral, C. L. F. Genetic diversity on acerola quality: A systematic review. Braz. Arch. Biol. Technol.https://doi.org/10.1590/1678-4324-2024220490 (2024).

    Article 

    Google Scholar
     

  • de Assis, S. A., Lima, D. C. & de Faria Oliveira, O. M. M. Activity of pectinmethylesterase, pectin content and vitamin C in acerola fruit at various stages of fruit development. Food Chem.74, 133–137 (2001).


    Google Scholar
     

  • dos Santos, C. P. et al. Transcriptome analysis of acerola fruit ripening: Insights into ascorbate, ethylene, respiration, and softening metabolisms. Plant. Mol. Biol.101, 269–296 (2019).


    Google Scholar
     

  • Fernandes, F. A. N., Santos, V. O., Gomes, W. F. & Rodrigues, S. Application of high-intensity ultrasound on acerola (Malpighia emarginata) juice supplemented with fructooligosaccharides and its effects on vitamins, phenolics, carotenoids, and antioxidant capacity. Processeshttps://doi.org/10.3390/pr11082243 (2023).

    Article 

    Google Scholar
     

  • Assis, S. A., De, Fernandes, F. P., Martins, A. B. G., Oliveira, O. M. M. D. F. & Acerola Importance, culture conditions, production and biochemical aspects. Fruits vol. 63 93–101 Preprint at (2008). https://doi.org/10.1051/fruits:2007051

  • Ragupathy, S. et al. Exploring DNA quantity and quality from raw materials to botanical extracts. Heliyonhttps://doi.org/10.1016/j.heliyon.2019.e01935 (2019).

    Article 

    Google Scholar
     

  • Yip, P. Y., Chau, C. F., Mak, C. Y. & Kwan, H. S. DNA methods for identification of Chinese medicinal materials. Chin. Med.https://doi.org/10.1186/1749-8546-2-9 (2007).

    Article 

    Google Scholar
     

  • Newmaster, S., Ragupathy, S. & Kress, W. J. Authentication of Medicinal Plant Components in North America’s NHP Industry Using Molecular Diagnostic Tools. in Medicinal and Aromatic Plants of North America (ed. Máthé, Á.) 325–339Springer International Publishing, Cham, (2020). https://doi.org/10.1007/978-3-030-44930-8_13

  • Kesanakurti, P. et al. Development of hydrolysis probe-based qPCR assays for Panax ginseng and Panax quinquefolius for detection of adulteration in ginseng herbal products. Foods. 10, 2705. https://doi.org/10.3390/foods10112705 (2021).

    Article 

    Google Scholar
     

  • Yu, J. et al. Progress in the use of DNA barcodes in the identification and classification of medicinal plants. Ecotoxicol Environ. Saf 208, 111691 (2021). https://doi.org/10.1016/j.ecoenv.2020.111691

  • Raclariu-Manolică, A. C. & de Boer, H. J. Chapter 8 – DNA barcoding and metabarcoding for quality control of botanicals and derived herbal products. in Evidence-Based Validation of Herbal Medicine (Second Edition) (ed. Mukherjee, P. K.) 223–238 (Elsevier, 2022). https://doi.org/10.1016/B978-0-323-85542-6.00004-4

  • Travadi, T. et al. Advancing Herbal Product Authentication: A Comprehensive Review Of DNA-Based Approach For Quality Control And Safety Assurance. Educational Adm. Theory Practices doi:https://doi.org/10.53555/kuey.v30i6(s).5308. (2024).

  • Lanubile, A., Stagnati, L., Marocco, A. & Busconi, M. DNA-based techniques to check quality and authenticity of food, feed and medicinal products of plant origin: A review. Trends Food Sci. Technol.https://doi.org/10.1016/j.tifs.2024.104568 (2024).

    Article 

    Google Scholar
     

  • Muyumba, N. W., Mutombo, S. C., Sheridan, H., Nachtergael, A. & Duez, P. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. Talanta Open. 4, 100070. https://doi.org/10.1016/j.talo.2021.100070 (2021).

    Article 

    Google Scholar
     

  • Ichim, M. C. & Booker, A. Chemical authentication of botanical ingredients: A review of commercial herbal products. Front. Pharmacol.https://doi.org/10.3389/fphar.2021.666850 (2021).

    Article 

    Google Scholar
     

  • Abraham, E. J. & Kellogg, J. J. Chemometric-guided approaches for profiling and authenticating botanical materials. Front. Nutr.https://doi.org/10.3389/fnut.2021.780228 (2021).

    Article 

    Google Scholar
     

  • Klein-Junior, L. C. et al. Quality control of herbal medicines: From traditional techniques to state-of-the-art approaches. Planta Med.87, 964–988. https://doi.org/10.1055/a-1529-8339 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Salo, H. M. et al. Authentication of berries and berry-based food products. Compr. Rev. Food Sci. Food Saf. 20, 5197–5225 (2021).

    CAS 

    Google Scholar
     

  • García-Pérez, P., Becchi, P. P., Zhang, L., Rocchetti, G. & Lucini, L. Metabolomics and chemometrics: The next-generation analytical toolkit for the evaluation of food quality and authenticity. Trends Food Sci. Technol.https://doi.org/10.1016/j.tifs.2024.104481 (2024).

    Article 

    Google Scholar
     

  • Ichim, M. C., Scotti, F. & Booker, A. Quality evaluation of commercial herbal products using chemical methods. Crit. Rev. Food Sci. Nutr.64, 4219–4239. https://doi.org/10.1080/10408398.2022.2140120 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Urumarudappa, S. K. J. et al. DNA barcoding and NMR spectroscopy-based assessment of species adulteration in the raw herbal trade of Saraca asoca (Roxb.) willd, an important medicinal plant. Int. J. Legal Med.130, 1457–1470 (2016).


    Google Scholar
     

  • Kesanakurti, P., Thirugnanasambandam, A., Ragupathy, S. & Newmaster, S. G. Genome skimming and NMR chemical fingerprinting provide quality assurance biotechnology to validate sarsaparilla identity and purity. Sci. Rep. 10, 19192. https://doi.org/10.1038/s41598-020-76073-7 (2020).

    Article 

    Google Scholar
     

  • Shirahata, T. et al. Metabolic fingerprinting for discrimination of DNA-authenticated atractylodes plants using 1H NMR spectroscopy. J. Nat. Med.75, 475–488 (2021).

    CAS 

    Google Scholar
     

  • Alberts, P. S. F. & Meyer, J. J. M. Integrating chemotaxonomic-based metabolomics data with DNA barcoding for plant identification: A case study on south-east African Erythroxylaceae species. South. Afr. J. Bot. 146, 174–186 (2022).

    CAS 

    Google Scholar
     

  • Ragupathy, S., Thirugnanasambandam, A., Vinayagam, V. & Newmaster, S. G. Nuclear magnetic resonance fingerprints and mini DNA markers for the authentication of cinnamon species ingredients used in food and natural health products. Plantshttps://doi.org/10.3390/plants13060841 (2024).

    Article 

    Google Scholar
     

  • Ragupathy, S. et al. Flower species ingredient verification using orthogonal molecular methods. Foods. 13(12), 1862.https://doi.org/10.3390/foods13121862 (2024).

    Article 

    Google Scholar
     

  • Wang, X. et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 349, 5472. https://doi.org/10.1136/bmj.g4490 (2014).

    Article 

    Google Scholar
     

  • Martinez-Farina, C. F. et al. Chemical barcoding: A nuclear-magnetic-resonance-based approach to ensure the quality and safety of natural ingredients. J. Agric. Food Chem.67, 7765–7774 (2019).

    CAS 

    Google Scholar
     

  • Grazina, L., Amaral, J. S. & Mafra, I. Botanical origin authentication of dietary supplements by DNA-based approaches. Compr. Rev. Food Sci. Food Saf.19, 1080–1109. https://doi.org/10.1111/1541-4337.12551 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Raclariu, A. C., Heinrich, M., Ichim, M. C. & de Boer, H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem. Anal.29, 123–128. https://doi.org/10.1002/pca.2732 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sarwat, M. & Yamdagni, M. M. DNA barcoding, microarrays and next generation sequencing: Recent tools for genetic diversity estimation and authentication of medicinal plants. Crit. Rev. Biotechnol.36, 191–203. https://doi.org/10.3109/07388551.2014.947563 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mahima, K. et al. Advancements and future prospective of DNA barcodes in the herbal drug industry. Front. Pharmacol.https://doi.org/10.3389/fphar.2022.947512 (2022).

    Article 

    Google Scholar
     

  • Osman, A. et al. Quality consistency of herbal products: chemical evaluation. In Progress in the Chemistry of Organic Natural Products 122: Botanical Dietary Supplements and Herbal Medicines (eds Kinghorn, A. D. et al.) 163–219 (Springer Nature Switzerland, 2023). https://doi.org/10.1007/978-3-031-26768-0_2.

    Chapter 

    Google Scholar
     

  • Bharti, S. K. & Roy, R. Quantitative 1H NMR spectroscopy. TrAC – Trends in Analytical Chemistry35, 5–26. https://doi.org/10.1016/j.trac.2012.02.007 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sobolev, A. P., Ingallina, C., Spano, M., Di Matteo, G. & Mannina, L. NMR-based approaches in the study of foods. Moleculeshttps://doi.org/10.3390/molecules27227906 (2022).

    Article 

    Google Scholar
     

  • Esslinger, S., Riedl, J. & Fauhl-Hassek, C. Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res. Int. 60, 189–204 (2014).

    CAS 

    Google Scholar
     

  • Lolli, V. & Caligiani, A. How nuclear magnetic resonance contributes to food authentication: Current trends and perspectives. Curr. Opin. Food Sci.https://doi.org/10.1016/j.cofs.2024.101200 (2024).

    Article 

    Google Scholar
     

  • Wishart, D. S. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol.19, 482–493. https://doi.org/10.1016/j.tifs.2008.03.003 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Spiteri, M. et al. Fast and global authenticity screening of honey using 1H-NMR profiling. Food Chem.189, 60–66 (2015).

    CAS 

    Google Scholar
     

  • Giraudeau, P. Quantitative NMR spectroscopy of complex mixtures. Chem. Commun. 59, 6627–6642 (2023).

    CAS 

    Google Scholar
     

  • Holmes, E., Tang, H., Wang, Y. & Seger, C. The Assessment of Plant Metabolite Profiles by NMR-Based Methodologies. (2006). https://doi.org/10.1055/s-2006-946682

  • Mahmud, I., Chowdhury, K. & Boroujerdi, A. PTC&B Tissue-Specific Metabolic Profile Study of Moringa Oleifera L. Using Nuclear Magnetic Resonance Spectroscopy. Plant Tissue Cult. & Biotech vol. 24 (2014).

  • Rosario, L. H. et al. DNA barcoding of the Solanaceae family in Puerto Rico including endangered and endemic species. J. Am. Soc. Hortic. Sci.144, 363–374 (2019).

    CAS 

    Google Scholar
     

  • Sayed, H. A., Mostafa, S., Haggag, I. M. & Hassan, N. A. DNA barcoding of Prunus species collection conserved in the National gene bank of Egypt. Mol. Biotechnol.65, 410–418 (2023).

    CAS 

    Google Scholar
     

  • Kress, W. J., Erickson, D. L. A. & Two-Locus Global DNA barcode for land plants: the coding RbcL gene complements the Non-Coding trnH-psbA spacer region. PLoS One 2(6), e508 (2007). https://doi.org/10.1371/journal.pone.0000508

  • Baldwin, B. G. et al. The its region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Mo. Bot. Gard.82247. (1995).

    Article 

    Google Scholar
     

  • Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. Use of DNA Barcodes to Identify Flowering Plants. (2005). http://www.pnas.org.10.1073pnas.0503123102

  • Cheng, T. et al. Barcoding the kingdom plantae: New PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour.16, 138–149 (2016).

    CAS 

    Google Scholar
     

  • Yao, H. et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One. 5(10), e13102.https://doi.org/10.1371/journal.pone.0013102 (2010).

    Article 

    Google Scholar
     

  • Kress, W. J. Plant DNA barcodes: Applications today and in the future. J. Syst. Evol.55, 291–307. https://doi.org/10.1111/jse.12254 (2017).

    Article 

    Google Scholar
     

  • Antil, S. et al. DNA barcoding, an effective tool for species identification: A review. Mol. Biol. Rep.50, 761–775. https://doi.org/10.1007/s11033-022-08015-7 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fazekas, A. J., Kuzmina, M. L., Newmaster, S. G. & Hollingsworth, P. M. DNA barcoding methods for land plants. in 223–252 (2012). https://doi.org/10.1007/978-1-61779-591-6_11

  • Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994).

    CAS 

    Google Scholar
     

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    CAS 

    Google Scholar
     

  • Beckonert, O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc.2, 2692–2703 (2007).

    CAS 

    Google Scholar
     

  • Nicholson, J. K., Foxall, P. J. D., Spraul, M., Farrant, R. D. & Lindon J. C. 750 MHz 1H and 1H-13 C NMR Spectroscopy of Human Blood Plasma. Anal Chem 67, 793–811 (1995).

  • Emwas, A. H. M. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. in 161–193 (2015). https://doi.org/10.1007/978-1-4939-2377-9_13

  • Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J Stat. Softw 25, 1–18. (2008). https://doi.org/10.18637/jss.v025.i01

  • Bourafai-Aziez, A. et al. Development, validation, and use of 1H-NMR spectroscopy for evaluating the quality of Acerola-based food supplements and quantifying ascorbic acid. Molecules, 27(17), 5614. https://doi.org/10.3390/molecules27175614 (2022).

    Article 

    Google Scholar
     

  • Smillie, T. J. & Khan, I. A. A comprehensive approach to identifying and authenticating botanical products. Clin. Pharmacol. Ther.87, 175–186. https://doi.org/10.1038/clpt.2009.287 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee, P. K., Bahadur, S., Chaudhary, S. K., Kar, A. & Mukherjee, K. Chapter 1 – Quality Related Safety Issue-Evidence-Based Validation of Herbal Medicine Farm To Pharmain 1–28 (Elsevier Inc, 2015). https://doi.org/10.1016/B978-0-12-800874-4.00001-5

  • Govindaraghavan, S. & Sucher, N. J. Quality assessment of medicinal herbs and their extracts: Criteria and prerequisites for consistent safety and efficacy of herbal medicines. Epilepsy Behav.52, 363–371 (2015).


    Google Scholar
     

  • Dubey, N. K., Kumar, R. & Tripathi, P. Global promotion of herbal medicine: india’s opportunity. Curr Sci 86, 37–41 (2004).

  • de Medeiros, F. G. M., Pereira, G. B. C., Pedrini, M. R. S., Hoskin, R. T. & Nunes, A. O. Evaluation of the environmental performance of the production of polyphenol-rich fruit powders: A case study on acerola. J Food Eng 372, (2024). https://doi.org/10.1016/j.jfoodeng.2024.112010

  • Gomes, B. T. et al. Acerola byproducts microencapsulated by spray and freeze-drying: the effect of carrier agent and drying method on the production of bioactive powder. Int. J. Food Eng. 20, 347–356 (2024).

    CAS 

    Google Scholar
     

  • Fonseca, M. T. et al. Improving the stability of spray-dried probiotic acerola juice: A study on hydrocolloids’ efficacy and process variables. Food Bioprod. Process.147, 209–218 (2024).

    CAS 

    Google Scholar
     

  • Coelho, B. E. S. et al. Production and characterization of powdered acerola juice obtained by atomization. Acta Scientiarum – Technology 47, 1–14 (2025).

  • Walsh, K. B. & Ragupathy, S. Mycorrhizal colonisation of three hybrid papayas (Carica papaya) under mulched and bare ground conditions. Aust. J. Exp. Agric.4781. (2007).

    Article 

    Google Scholar
     

  • Dubouzet, J. G. & Shinoda, K. Phylogenetic analysis of the internal transcribed spacer region of Japanese Lilium species. Theor. Appl. Genet.98, 954–960 (1999).

    CAS 

    Google Scholar
     

  • Faller, A. C. et al. DNA quality and quantity analysis of camellia sinensis through processing from fresh leaves to a green tea extract. J. AOAC Int.102, 1798–1807 (2019).

    CAS 

    Google Scholar
     


  • Source link

    puravive

    Written by : Editorial team of BIPNs

    Main team of content of bipns.com. Any type of content should be approved by us.

    Share this article:

    Leave A Comment