SmoothieDiet

Application of green tea to enhance the antioxidant properties of fermented cauliflower

  • Jarmoluk, A. Food technology. T.1. Raw materials, products, functional food (in Polish) (Educational Publishing House WSiP, 2016).

  • Engel, E., Baty, C., Le Corre, D., Souchon, I. & Martin, N. Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J. Agric. Food Chem. 50, 6459–6467. https://doi.org/10.1021/jf025579u (2002).

    sugardefender24 banner

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C. & Methven, L. Taste and flavor perceptions of glucosinolates, isothiocyanates, and related compounds. Mol. Nutr. Food Res. 62, 1700990. https://doi.org/10.1002/mnfr.201700990 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wieczorek, M. N. et al. The relation between phytochemical composition and sensory traits of selected Brassica vegetables. LWT 156, 113028. https://doi.org/10.1016/j.lwt.2021.113028 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Thompson, H. O., Önning, G., Holmgren, K., Strandler, H. S. & Hultberg, M. Fermentation of cauliflower and white beans with Lactobacillus plantarum—Impact on levels of riboflavin, folate, vitamin B12, and amino acid composition. Plant Foods Hum. Nutr. 75, 236–242. https://doi.org/10.1007/s11130-020-00806-2 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jastrzębska, A. et al. Determination of selected biogenic amines in fermented vegetables juices. Food Control 154, 109980. https://doi.org/10.1016/j.foodcont.2023.109980 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Paramithiotis, S., Hondrodimou, O. L. & Drosinos, E. H. Development of the microbial community during spontaneous cauliflower fermentation. Food Res. Int. 43, 1098–1103. https://doi.org/10.1016/j.foodres.2010.01.023 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Rachwał, K., Gustaw, K. & Sadok, I. Enhancing food sustainability through probiotics isolated from fermented cauliflower. Sustainability 16, 8340. https://doi.org/10.3390/su16198340 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Herman, A., Matulewicz, O., Korzeniowska, E. & Herman, A. P. Determination of post-fermentation waste from fermented vegetables as potential substitutes for preservatives in o/w emulsion. Int. J. Mol. Sci. 25, 5510. https://doi.org/10.3390/ijms25105510 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H., Wu, H., Zhou, R., Yu, F. & Zang, R. The effects of fermented cauliflower residue feed on the diarrhea rate, intestinal morphology, immune indicators, and intestinal flora of weaned piglets. Fermentation 10, 465. https://doi.org/10.3390/fermentation10090465 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wojdyła, T. & Wichrowska, D. The influence of additives used and storage methods on the quality of sauerkraut. Inż. Ap. Chem. 53, 424–426 (2014).


    Google Scholar
     

  • Choi, W.-Y. & Park, K.-Y. Increased preservative and antimutagenic activities of kimchi with addition of green tea leaves. J. Food Sci. Nat. 5, 189–193 (2000).


    Google Scholar
     

  • Patent KR100384309B1. Functional Kimchi added green tea and process for preparation thereof (Korea, 2003).

  • Patent KR20170025806A. Kimchi Composition Comprising Vitamin C and Its Antioxidative Activity and Whitening Effect (Korea, 2017).

  • Musial, C., Kuban-Jankowska, A. & Gorska-Ponikowska, M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 21, 1744. https://doi.org/10.3390/ijms21051744 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cichoń, Z., Miśniakiewicz, M. & Szkudlarek, E. Properties of green tea (in Polish). Zesz. Nauk. 73, 59–90 (2007).


    Google Scholar
     

  • Kodama, D. H., Goncalves, A. E. S. S., Lajolo, F. M. & Genovese, M. I. Flavonoids, total phenolics and antioxidant capacity: Comparison between commercial green tea preparations. Ciênc. Tecnol. Aliment. Camp. 30, 1077–1082. https://doi.org/10.1590/S0101-20612010000400037 (2010).

    Article 

    Google Scholar
     

  • Luo, Q. et al. Green extraction of antioxidant polyphenols from green tea (Camellia sinensis). Antioxidants 9, 785. https://doi.org/10.3390/antiox9090785 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narukawa, M. et al. Evaluation of the bitterness of green tea catechins by a cell-based assay with the human bitter taste receptor hTAS2R39. Biochem. Biophys. Res. Commun. 405, 620–625. https://doi.org/10.1016/j.bbrc.2011.01.079 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, T. & Aye, K. N. The legend of laphet: A Myanmar fermented tea leaf. J. Ethn. Foods 2, 173–178. https://doi.org/10.1016/j.jef.2015.11.003 (2015).

    Article 

    Google Scholar
     

  • Cao, L. T. et al. A comparative analysis for the volatile compounds of various Chinese dark teas using combinatory metabolomics and fungal solid-state fermentation. J. Food Drug Anal. 26, 112–123. https://doi.org/10.1016/j.jfda.2016.11.020 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z.-J. et al. Flavour chemical dynamics during fermentation of kombucha tea. EJFA 30, 732–741. https://doi.org/10.9755/ejfa.2018.v30.i9.1794 (2018).

    Article 

    Google Scholar
     

  • Cheng, L. et al. Distinct changes of metabolic profile and sensory quality during Qingzhuan tea processing revealed by LC-MS-Based metabolomics. J. Agri. Food Chem. 68, 4955–4965. https://doi.org/10.1021/acs.jafc.0c00581 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, R., Sun, J. C., Lassabliere, B., Yu, B. & Liu, S. Q. UPLC-Q-TOF-MS based metabolomics and chemometric analyses for green tea fermented with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V. Curr. Res. Food Sci. 5, 471–478. https://doi.org/10.1016/j.crfs.2022.02.012 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogdański, P. et al. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr. Res. 32, 421–427. https://doi.org/10.1016/j.nutres.2012.05.007 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Indarti, K., Apriani, E. F., Wibowo, A. E. & Simanjuntak, P. Antioxidant activity of ethanolic extract and various fractions from green tea (Camellia sinensis L.) leaves. Pharmacog. J. 11, 771–776. https://doi.org/10.5530/pj.2019.11.122 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, X. Y. et al. Effects and mechanisms of tea for the prevention and management of cancers: An updated review. Crit. Rev. Food Sci. Nutr. 60, 1693–1705. https://doi.org/10.1080/10408398.2019.1588223 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirose, K. et al. Preparing and characterizing of xyloglucan films containing tea extract for oral mucositis. ACS Omega 10, 390–399. https://doi.org/10.1021/acsomega.4c06410 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S., Zhang, Q., Li, H., Qiu, Z. & Yu, Y. Comparative assessment of the antibacterial efficacies and mechanisms of different tea extracts. Foods 11, 620. https://doi.org/10.3390/foods11040620 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alkufeidy, R. M., Altuwijri, L. A., Aldosari, N. S., Alsakabi, N. & Dawoud, T. M. Antimicrobial and synergistic properties of green tea catechins against microbial pathogens. J. King Saud Univ. Sci. 36, 103277. https://doi.org/10.1016/j.jksus.2024.103277 (2024).

    Article 

    Google Scholar
     

  • Parvez, Md. A. K. et al. Antibacterial activities of green tea crude extracts and synergistic effects of epigallocatechingallate (EGCG) with gentamicin against MDR pathogens. Heliyon 5, e02126. https://doi.org/10.1016/j.heliyon.2019.e02126 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kováć, J., Slobodníková, L., Nebus, B. & Kurin, E. Antibacterial activity of green tea and peppermint extracts against Enterococcus faecalis and the potential of EGCG in oral health. Eur. Pharm. J. 2025, 1–7. https://doi.org/10.2478/afpuc-2025-0002 (2025).

    Article 
    CAS 

    Google Scholar
     

  • McCue, P. P. & Shetty, K. Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochem. 40, 1791–1797 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Lee, H. C., Jenner, A. M., Low, C. S. & Lee, Y. K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 157, 876–884 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaziri, I., Ben Slama, M., Mhadhbi, H., Urdaci, M. C. & Hamdi, M. Effect of green and black teas (Camellia sinensis L.) on the characteristic microflora of yogurt during fermentation and refrigerated storage. Food Chem. 112, 614–620 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Neffe-Skocińska, K., Jaworska, D., Kołożyn-Krajewska, D., Dolatowski, Z. & Jachacz-Jówko, L. The effect of LAB as probiotic starter culture and green tea extract addition on dry fermented pork loins quality. Biomed. Res. Int. 19, 452757. https://doi.org/10.1155/2015/452757 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jin, Y. H. et al. Lactic acid fermented green tea with Levilactobacillus brevis capable of producing γ-aminobutyric acid. Fermentation 7, 110. https://doi.org/10.3390/fermentation7030110 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, R., Sun, J., Lassabliere, B., Yu, B. & Liu, S. Green tea fermentation with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V. LWT 157, 113081. https://doi.org/10.1016/j.lwt.2022.113081 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, N. K., Dong, N. T., Nguyen, H. & Le, P. H. Lactic acid bacteria: Promising supplements for enhancing the biological activities of Kombucha. Springer Plus 4, 91. https://doi.org/10.1186/s40064-015-0872-3 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, X.-X., Wang, B. & Fang, F. Enhancement of Kombucha fermentation by adding lactic acid bacteria. Food Ferment. Ind. 44, 185–192. https://doi.org/10.13995/j.cnki.11-1802/ts.017688 (2018).

    Article 

    Google Scholar
     

  • Zhuang, X. et al. Fermentation quality of herbal tea residue and its application in fattening cattle under heat stress. BMC Vet. Res. 17, 348. https://doi.org/10.1186/s12917-021-03061-y (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X., Zhou, X., Li, S., Zhang, H. & Liu., Z.,. Effects of tea residues-fermented feed on production performance, egg quality, antioxidant capacity, caecal microbiota, and ammonia emissions of laying hens. Front. Vet. Sci. 10, 1195074. https://doi.org/10.3389/fvets.2023.1195074 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, G.-H., Lee, S.-Y., Yoo, J.-I., Chung, J. H. & Park, K.-Y. Catechin with lactic acid bacteria starters enhances the antiobesity effect of kimchi. J. Med. Food 26, 560–569. https://doi.org/10.1089/jmf.2023.K.0067 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, G.-H., Lee, S.-Y. & Park, K.-Y. Antiobesity effect and metabolite analysis of catechin functional kimchi. J. Ethn. Foods 11, 32. https://doi.org/10.1186/s42779-024-00248-0 (2024).

    Article 

    Google Scholar
     

  • Hayashi, T., Ueda, S., Suruta, H. T., Kuwahara, H. & Osawa, R. Complexing of green tea Catechins with food constituents and degradation of the complexes by Lactobacillus plantarum. BMFH 31, 27–36. https://doi.org/10.12938/bmfh.31.27 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarrah, A. et al. Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces. J. Funct. Foods 54, 489–497. https://doi.org/10.1016/j.jff.2019.02.004 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tumbarski, Y. et al. Characterization and selection of Lactobacillus strains with potential probiotic applications. Appl. Sci. 15, 2902. https://doi.org/10.3390/app15062902 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Anumudu, C. K., Miri, T. & Onyeaka, H. Multifunctional applications of lactic acid bacteria: Enhancing safety, quality, and nutritional value in foods and fermented beverages. Foods 13, 3714. https://doi.org/10.3390/foods13233714 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bangar, S. P., Suri, S., Trif, M. & Ozogul, F. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 46, 101615. https://doi.org/10.1016/j.fbio.2022.101615 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ravyts, F., Vuyst, L. D. & Leroy, F. Bacterial diversity and functionalities in food fermentations. Eng. Life Sci. 12, 356–367. https://doi.org/10.1002/elsc.201100119 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zielinski, H., Surma, M. & Zielinska, D. The naturally fermented sour pickled cucumbers. In Fermented Foods in Health and Disease Prevention (eds Frias, J. et al.) 503–516 (Academic Press, Cambridge, 2017).

    Chapter 

    Google Scholar
     

  • Daba, G. M., Elnahas, M. O. & Elkhateeb, W. A. Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. Int. J. Biol. Macromol. 173, 79–89. https://doi.org/10.1016/j.ijbiomac.2021.01.110 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korcz, E. & Varga, L. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends Food Sci. Technol. 110, 375–384. https://doi.org/10.1016/j.tifs.2021.02.014 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kuria, M. W., Matofari, J. W. & Nduko, J. M. Physicochemical, antioxidant, and sensory properties of functional mango (Mangifera indica L.) leather fermented by lactic acid bacteria. J. Agric. Food Res. 6, 100206. https://doi.org/10.1016/j.jafr.2021.100206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Quan, Q., Liu, W., Guo, J., Ye, M. & Zhang, J. Effect of six lactic acid bacteria strains on physicochemical characteristics, antioxidant activities and sensory properties of fermented orange juices. Foods 11, 1920. https://doi.org/10.3390/foods11131920 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H. et al. Change of phytochemicals and bioactive substances in Lactobacillus fermented Citrus juice during the fermentation process. LWT 180, 114715. https://doi.org/10.1016/j.lwt.2023.114715 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jayashree, S., Jayaraman, K. & Kalaichelvan, G. Isolation, screening and characterization of riboflavin producting lactic acid bacteria from Katpadi Vellore district. Recent Res. Sci. Technol. 2, 83–88 (2010).


    Google Scholar
     

  • Capozzi, V. et al. Biotechnological production of vitamin B2-enriched bread and pasta. J. Agric. Food Chem. 59, 8013–8020. https://doi.org/10.1021/jf201519h (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos, F., Wegkamp, A., de Vos, W. M., Smid, E. J. & Hugenholtz, J. High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl. Environ. Microbiol. 74, 3291–3294. https://doi.org/10.1128/AEM.02719-07 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LeBlanc, J. G., Taranto, M. P., Molina, V. & Sesma, F. B-group vitamins production by probiotic lactic acid bacteria in Biotechnology of Lactic Acid Bacteria: Novel Applications (eds. Mozzi, F., Raya, R., Vignolo G.) 211–232 (Wiley-Blackwell 2010).

  • Torres, A. C. et al. Cobalamin production by Lactobacillus coryniformis: Biochemical identification of the synthetized corrinoid and genomic analysis of the biosynthetic cluster. BMC Microbiol. 16, 240. https://doi.org/10.1186/s12866-016-0854-9 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, P., Gu, Q., Yang, L., Yu, Y. & Wang, Y. Characterization of extracellular vitamin B12 producing Lactobacillus plantarum strains and assessment of the probiotic potentials. Food Chem. 234, 494–501. https://doi.org/10.1016/j.foodchem.2017.05.037 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, B. & Sharma, S. Vitamin B12 production by Lactobacillus species isolated from milk products. J. Res. Appl. Sci. Biotechnol. 1, 48–59. https://doi.org/10.55544/jrasb.1.2.6 (2022).

    Article 

    Google Scholar
     

  • Morishita, T., Tamura, N., Makino, T. & Kudo, S. Production of menaquinones by lactic acid bacteria. J. Dairy Sci. 82, 1897–1903 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boe, C. A. & Holo, H. Engineering Lactococcus lactis for Increased Vitamin K2 Production. Front Bioeng. Biotechnol. 8, 191. https://doi.org/10.3389/fbioe.2020.00191 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behera, S. S., Ray, R. C. & Zdolec, N. Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. BioMed. Res. Int. 2018, 9361614. https://doi.org/10.1155/2018/9361614 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, H., Huang, W. & Yao, Y.-F. The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. Microbial Cell 10, 49–62. https://doi.org/10.15698/mic2023.03.792 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knez, E., Kadac-Czapska, K. & Grembecka, M. Fermented vegetables and legumes vs lifestyle diseases: microbiota and more. Life 13, 1044. https://doi.org/10.3390/life13041044 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, A. M., Tarfeen, N., Mohamed, H. & Song, Y. Fermented foods: Their health-promoting components and potential effects on gut microbiota. Fermentation 9, 118. https://doi.org/10.3390/fermentation9020118 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Todorovic, S. et al. Health benefits and risks of fermented foods—the PIMENTO initiative. Front. Nutr. 11, 1458536. https://doi.org/10.3389/fnut.2024.1458536 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • AOAC. Official Method of Analysis, 18th ed. (Association of Officiating Analytical Chemists, 2015).

  • Krełowska-Kułas, M. Analyses of Food Products Quality (in polish) (PWE, 1993).

  • Turkmen, N., Sari, F. & Velioglu, Y. S. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 93, 713–718. https://doi.org/10.1016/j.foodchem.2004.12.038 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Shraim, A. M., Ahmed, T. A., Rahman, M. M. & Hijji, Y. M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brand-Williams, W., Cuvelier, M. E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benzie, I. F. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of ‘Antioxidant Power’: The FRAP Assay. Anal. Biochem. 239, 70–76. https://doi.org/10.1006/abio.1996.0292 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • PN-EN ISO 8586:2014-03 Sensory analysis. General guidelines for the selection, training, and monitoring of selected assessors and sensory evaluation experts. Polish Committee for Standardization.

  • PN-ISO 5496:1997 Sensory analysis. Methodology. Introduction and training of assessors in the detection and recognition of odors. Polish Committee for Standardization.

  • PN-ISO 3972:2016-07 Sensory analysis. Methodology. Methods for testing taste sensitivity. Polish Committee for Standardization

  • PN-EN ISO 11132:2017-08 Sensory analysis. Methodology. Guidelines for monitoring the performance of a quantitative sensory system. Polish Committee for Standardization.

  • PN-EN ISO 8589:2010 Sensory analysis. General guidelines for the design of sensory analysis laboratories. Polish Committee for Standardization.

  • PN-ISO 5497:1998 Sensory analysis. Methodology. Guidelines for the preparation of samples for which direct sensory analysis is not possible. Polish Committee for Standardization.

  • PN-ISO 11035:1999 Sensory analysis. Identification and selection of descriptors for determining the sensory profile using multivariate methods. Polish Committee for Standardization.

  • PN-EN ISO 13299:2010 Sensory analysis—Methodology—General guidelines for determining sensory profiles. Polish Committee for Standardization.

  • PN-ISO 4121:1998 Sensory analysis—Methodology—Evaluation of food products using scaling methods. Polish Committee for Standardization.

  • PN-EN ISO 11036:1999 Sensory analysis. Methodology. Texture profiling. Polish Committee for Standardization

  • Migut, D., Gorzelany, J. & Wołowiec, A. Evaluation of selected chemical properties of fresh and pickled field cucumbers. Inż. Przetw. Spoż. Pol. J. Food Eng. 3, 33–39 (2018).


    Google Scholar
     

  • Kao, C.-C. & Lin, J.-Y. Culture condition optimization of naturally lacto-fermented cucumbers based on changes in detrimental and functional ingredients. Food Chem. X 19, 100839. https://doi.org/10.1016/j.fochx.2023.100839 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiczorowski, P., Kiczorowska, B., Samolińska, W., Szmigielski, M. & Winiarska-Mieczan, A. Effect of fermentation of chosen vegetables on the nutrient, mineral, and biocomponent profile in human and animal nutrition. Sci. Rep. 12, 13422. https://doi.org/10.1038/s41598-022-17782-z (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Dynamic changes in physic-chemical properties and bacterial community during natural fermentation of tomatoes. Food Sci. Technol. Caminas 42, e63520. https://doi.org/10.1590/fst.63520 (2022).

    Article 

    Google Scholar
     

  • Ghosh, D. Studies on the changes of biochemical, microbiological and sensory parameters of sauerkraut and fermented mix vegetables. Food Res. 5, 78–83. https://doi.org/10.26656/fr.2017.5(1).193 (2021).

    Article 

    Google Scholar
     

  • Singhal, P., Satya, S. & Naik, S. N. Fermented bamboo shoots: a complete nutritional, anti-nutritional and antioxidant profile of the sustainable and functional food to food security. Food Chem. 3, 100041. https://doi.org/10.1016/j.fochms.2021.100041 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ye, J.-H., Huang, L.-Y., Terefe, N. S. & Augustin, M. A. Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food Chem. 286, 616–623. https://doi.org/10.1016/j.foodchem.2019.02.030 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dissanayake, I. H. et al. Lactic acid bacterial fermentation as a biotransformation strategy to enhance the bioavailability of phenolic antioxidants in fruits and vegetables: A comprehensive review. Food Res. Int. 209, 116283. https://doi.org/10.1016/j.foodres.2025.116283 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, F. et al. Effects of fermentation on bioactivity and the composition of polyphenols contained in polyphenol-rich foods: A review. Foods 12(17), 3315 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, G. Y. et al. Synergistic antioxidant and anti-inflammatory activities of kale juice fermented with Limosilactobacills reuteri EFEL6901 or Limosilactobacills fermentum EFEL6800. Antioxidants 12(10), 1850 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Antioxidant properties of a vegetable–fruit beverage fermented with two Lactobacillus plantarum strains. Food Sci. Biotech. 27, 1719–1726. https://doi.org/10.1007/s10068-018-0411-4 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Park, S.B., Han, B.K., Oh, H.J., Lee, SJ, Cha, S.K., Park, Y.S., & Choi, H.J. Bioconversion of green tea extract using lactic acid bacteria. Food Eng. Prog. 16, 26–32 (2012).

  • Hu, T., Shi, S. & Ma, Q. Modulation effects of microorganisms on tea in fermentation. Front. Nutr. 9, 931790. https://doi.org/10.3389/fnut.2022.931790 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, N.-K. & Paik, H.-D. Bioconversion using lactic acid bacteria: ginsenosides, GABA, and phenolic compounds. J. Microbiol. Biotechnol. 27, 869–877. https://doi.org/10.4014/jmb.1612.12005 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RuizRodríguez, L. G. et al. Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Res. Int. 140, 109854. https://doi.org/10.1016/j.foodres.2020.109854 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cvetković, D. et al. Survival of wild strains of Lactobacilli during Kombucha fermentation and their contribution to functional characteristics of beverage. Pol. J. Food Nutr. Sci. 69, 407–415. https://doi.org/10.31883/pjfns/112276 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nishioka, H., Ohno, T., Iwahashi, H. & Horie, M. Diversity of Lactic acid bacteria involved in the fermentation of Awa-bancha. Microbes Environ. 36, ME21029. https://doi.org/10.1264/jsme2.ME21029 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nout, M. J. R. & Ngoddy, P. O. Technological aspects of preparing affordable fermented complementary foods. Food Control 8, 279–287 (1997).

    Article 

    Google Scholar
     

  • Wang, R., Sun, J. C., Lassabliere, B., Yu, B. & Liu, S. Q. Fermentation characteristics of four non-Saccharomyces yeasts in green tea slurry. Food Microbiol. 92, 03609. https://doi.org/10.1016/j.fm.2020.103609 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, R., Sun, J. C., Lassabliere, B., Yu, B. & Liu, S. Q. 13-Glucosidase activity of Cyberlindnera (Williopsis) saturnus var. mrakii NCYC 2251 and its fermentation effect on green tea aroma compounds. LWT 151, 112184. https://doi.org/10.1016/j.lwt.2021.112184 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Martinez-Villaluenga, C. et al. Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. taler) cultivated in different seasons. J. Food Sci. 74, C62–C67. https://doi.org/10.1111/j.1750-3841.2008.01017.x (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciska, E., Honke, J. & Drabińska, N. Changes in glucosinolates and their breakdown products during the fermentation of cabbage and prolonged storage of sauerkraut: focus on sauerkraut juice. Food Chem. 365, 130498. https://doi.org/10.1016/j.foodchem.2021.130498 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Microbial community dynamics and metabolome changes during spontaneous fermentation of northeast sauerkraut from different households. Front. Microbiol. 11, 1878. https://doi.org/10.3389/fmicb.2020.01878 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Comparison of northeast sauerkraut fermentation between single lactic acid bacteria strains and traditional fermentation. Food Res. Int. 137, 109553. https://doi.org/10.1016/j.foodres.2020.109553 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satora, P., Skotniczny, M., Strnad, S. & Piechowicz, W. Chemical composition and sensory quality of sauerkraut produced from different cabbage varieties. LWT 136, 110325. https://doi.org/10.1016/j.lwt.2020.110325 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Major, N. et al. Bioactive properties, volatile compounds, and sensory profile of sauerkraut are dependent on cultivar choice and storage conditions. Foods 11, 1218. https://doi.org/10.3390/foods11091218 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janiszewska-Turak, E., Kołakowska, W., Pobiega, K. & Gramza-Michałowska, A. Influence of drying type of selected fermented vegetables pomace on the natural colorants and concentration of lactic acid bacteria. Appl. Sci. 11, 7864. https://doi.org/10.3390/app11177864 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. I. et al. Influence of salt concentration on Kimchi cabbage (Brassica rapa L. ssp. pekinensis) mass transfer kinetics and textural and microstructural properties during osmotic dehydration. J. Food Sci. 88, 1610–1622. https://doi.org/10.1111/1750-3841.16514 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     


  • Source link

    LivPure Quiz

    Written by : Editorial team of BIPNs

    Main team of content of bipns.com. Any type of content should be approved by us.

    Share this article:

    Leave A Comment