Impact of novel probiotic strains isolated from Algerian fermented butter and green tea waste on broilers’ production quality
Krysiak, K., Konkol, D. & Korczyński, M. Overview of the use of probiotics in poultry production. Animals 11 (6), 1620 (2021).
Halder, N., Sunder, J., De, A. K., Bhattacharya, D. & Joardar, S. N. Probiotics in poultry: a comprehensive review. J. Basic. Appl. Zool. 85 (1), 23 (2024).
Sugiharto, S. & Ranjitkar, S. Recent advances in fermented feeds towards improved broiler chicken performance, Gastrointestinal tract microecology and immune responses: A review. Anim. Nutr. 5 (1), 1–10 (2019).
Wang, H. et al. Dietary Bacillus subtilis benefits meat quality by regulating the muscle fiber type and antioxidant capacity of broilers. Poult. Sci. 103 (12), 104267 (2024).
Bentahar, M. C. et al. Evaluation of probiotic potential and functional properties of Lactobacillus strains isolated from Dhan, traditional Algerian goat milk butter. Foods 13 (23), 3781 (2024).
Ludfiani, D., Asmara, W., Wahyuni, A. & Astuti, P. Identification of Lactobacillus spp. on basis morphological, physiological, and biochemical characteristic from Jawa super chicken excreta, in BIO Web of Conferences, EDP Sciences, p. 6012. (2021).
Qadi, W. S. M. et al. Biological characterization and metabolic variations among Cell-Free supernatants produced by selected Plant-Based lactic acid bacteria. Metabolites 13 (7), 849 (2023).
Sjofjan, O. & Adli, D. N. The effect of replacing fish meal with fermented Sago larvae (FSL) on broiler performance. Livest Res. Rural Dev, 33 2 (2021).
Popova, T. Effect of probiotics in poultry for improving meat quality. Curr. Opin. Food Sci. 14, 72–77 (2017).
Yousaf, S. et al. A review of probiotic applications in poultry: improving immunity and having beneficial effects on production and health. Adv Microbiol, 61 (3), 115–123 (2022).
Tang, X., Liu, X. & Liu, H. Effects of dietary probiotic (Bacillus subtilis) supplementation on carcass traits, meat quality, amino acid, and fatty acid profile of broiler chickens. Front. Vet. Sci. 8, 767802 (2021).
Mohammed, A. A., Zaki, R. S., Negm, E. A., Mahmoud, M. A. & Cheng, H. W. Effects of dietary supplementation of a probiotic (Bacillus subtilis) on bone mass and meat quality of broiler chickens. Poult. Sci. 100 (3), 100906 (2021).
Soumeh, E. A., Cedeno, A. D. R. C., Niknafs, S., Bromfield, J. & Hoffman, L. C. The efficiency of probiotics administrated via different routes and doses in enhancing production performance, meat quality, gut morphology, and microbial profile of broiler chickens. Animals 11 (12), 3607 (2021).
Amarantini, C., Satwika, D., Budiarso, T. Y., Yunita, E. R. & Laheba, E. A. Screening of antimicrobial-producing lactic acid bacteria isolated from traditional fish fermentation against pathogenic bacteria, in Journal of Physics: Conference Series, IOP Publishing, p. 12045. (2019).
Ludwig, W., Schleifer, K. & Whitman, W. B. Lactobacillales ord. nov, Bergey’s Man. Syst. archaea Bact., (eds M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman). p. 1, (2015).
Vasiliauskaite, A. et al. Application of edible coating based on liquid acid Whey protein concentrate with Indigenous Lactobacillus helveticus for acid-curd cheese quality improvement. Foods 11 (21), 3353 (2022).
Boucard, A-S. et al. Age and giardia intestinalis infection impact canine gut microbiota. Microorganisms 9 (9), 1862 (2021).
Sukrama, I. D. M., Pinatih, K. J. P. & Suardana, I. W. Molecular analysis of lactic acid bacteria isolate Sr2 from Bali cattle rumen. J. Glob Pharma Technol. 5 (9), 44–49 (2017).
Sreepathi, N. et al. Screening for potential novel probiotic Levilactobacillus brevis RAMULAB52 with antihyperglycemic property from fermented carica Papaya L. Front. Microbiol. 14, 1168102 (2023).
Rose, R., Golosova, O., Sukhomlinov, D., Tiunov, A. & Prosperi, M. Flexible design of multiple metagenomics classification pipelines with UGENE. Bioinformatics 35 (11), 1963–1965 (2019).
Okonechnikov, K., Golosova, O., Fursov, M. & Team, U. G. E. N. E. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28 (8), 1166–1167 (2012).
Carvalho, L., Fernandes, N., Silva, B. N., Gonzales-Barron, U. & Cadavez, V. Molecular Identification and Phylogenetic Inference of Lactic Acid Bacteria Isolated from Goat’s Raw Milk Cheese, in Biology and Life Sciences Forum, MDPI, p. 39. (2023).
Sureshkumar, S. et al. Inclusion of Lactobacillus salivarius strain revealed a positive effect on improving growth performance, fecal microbiota and immunological responses in chicken. Arch. Microbiol. 203, 847–853 (2021).
Yoon, S. H. et al. Introducing ezbiocloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67 (5), 1613–1617 (2017).
Kumar, S., Kashyap, P. L., Singh, R. & Srivastava, A. K. Preservation and maintenance of microbial cultures. In Analyzing Microbes. Springer Protocols Handbooks (eds Arora, D. et al.) (Springer, 2013). https://doi.org/10.1007/978-3-642-34410-7_11.
Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38 (7), 3022–3027 (2021).
Yasmin, I. et al. In vitro probiotic potential and safety evaluation (hemolytic, cytotoxic activity) of bifidobacterium strains isolated from Raw camel milk. Microorganisms 8 (3), 354 (2020).
Casarotti, S. N. et al. In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water Buffalo mozzarella cheese. Ann. Microbiol. 67, 289–301 (2017).
Colombo, M., Nero, L. A. & Todorov, S. D. Safety profiles of beneficial lactic acid bacteria isolated from dairy systems. Brazilian J. Microbiol. 51 (2), 787–795 (2020).
Dela Cruz, T. E. E. & Torres, J. M. O. Gelatin hydrolysis test protocol. Am. Soc. Microbiol. 1, 1–10 (2012).
Qadi, W. S. M. et al. Characterization of Physicochemical, Biological, and Chemical Changes Associated with Coconut Milk Fermentation and Correlation Revealed by 1H NMR-Based Metabolomics, Foods, vol. 12, no. 10, p. 2023. (1971).
Bambace, M. F., Alvarez, M. V. & Moreira, M. R. Novel functional blueberries: Fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings. Food Res. Int. 122, 653–660 (2019).
Hocquette, J. F. et al. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal 4 (2), 303–319. https://doi.org/10.1017/S1751731109991091 (2010).
Zineb, B., Said, D. & Djilali, B. Impact of both early-age acclimation and linseed dietary inclusion on fat deposition and fatty acids’ meat traits in heat-stressed broiler chickens. J. Adv. Veterinary Anim. Res. 8 (2), 237 (2021).
Abudabos, A. M., Alyemni, A. H., Dafalla, Y. M. & Khan, R. U. The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to clostridium perfringens challenge. J. Appl. Anim. Res. 46 (1), 691–695 (2018).
Abudabos, A. M., Alyemni, A. H., Dafalla, Y. M. & Khan, R. U. .The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium. Environ. Sci. Pollut Res. 23, 24151–24157 (2016).
Sugiharto, S., Yudiarti, T., Isroli, I., Widiastuti, E. & Putra, F. D. Effects of feeding cassava pulp fermented with acremonium charticola on growth performance, nutrient digestibility and meat quality of broiler chicks. S Afr. J. Anim. Sci. 47 (2), 130–138 (2017).
Association of Official Analytical Chemists (AOAC). 920.125, Official methods of analysis, 2005, Association of Official Analytical Chemists Arlington, VA, USA.
Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 226, 498–509 (1957).
Botsoglou, N. A. et al. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J Agric. Food Chem, 42, 9, pp. 1931–1937, 1994.
Christie, W. W. & Han, X. Lipid Analysis: isolation, separation, Identification and Lipidomic Analysis (Elsevier, 2010).
Sharma, A., Lee, S. & Park, Y. S. Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Sci. Biotechnol. 29, 1301–1318 (2020).
Tamime, A. Y. & Thomas, L. V. (eds) Probiotic Dairy Products (Wiley, 2018).
Zheng, J. et al. A taxonomic note on the genus lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70 (4), 2782–2858 (2020).
Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12 (9), 635–645 (2014).
dR Altavas, P. J. et al. Safety assessment of five candidate probiotic lactobacilli using comparative genome analysis. Access. Microbiol. 6 (1), 000715–v4 (2024).
Colautti, A., Arnoldi, M., Comi, G. & Iacumin, L. Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Food Microbiol. 103, 103934 (2022).
Pradhan, D., Mallappa, R. H. & Grover, S. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control. 108, 106872 (2020).
Liao, C., Mao, F., Qian, M. & Wang, X. Pathogen-derived nucleases: an effective weapon for escaping extracellular traps. Front. Immunol. 13, 899890 (2022).
Kang, M. S., Yeu, J. E. & Hong, S. P. Safety evaluation of oral care probiotics Weissella Cibaria CMU and CMS1 by phenotypic and genotypic analysis. Int. J. Mol. Sci. 20 (11), 2693 (2019).
Chen, T. et al. In vitro and in vivo genome-based safety evaluation of Lacticaseibacillus rhamnosus LRa05. Food Chem. Toxicol. 186, 114600 (2024).
da Silva, L. A., Lopes Neto, J. H. P. & Cardarelli, H. R. .Safety and probiotic functionality of isolated goat milk lactic acid bacteria. Ann. Microbiol. 69, 1497–1505 (2019).
Todorov, S. D., Tome, E. & Nero, L. A. Not everything is a question of reputation: safety of bacteriocinogenic LAB isolated from smoked salmon. CET Journal-Chemical Eng. Trans, 75, 451–456 (2019).
Gupta, A. & Sharma, N. Characterization of potential probiotic lactic acid bacteria-Pediococcus acidilactici Ch-2 isolated from Chuli-A traditional apricot product of Himalayan region for the production of novel bioactive compounds with special therapeutic properties. J. Food Microbiol. Saf. Hyg. 2 (1), 119 (2017).
Zaaraoui, L. et al. Typical Moroccan goat Lactic acid bacteria and their assay as starters. Nova Biotechnol. Et Chim. 10, 958 (2021).
Grujović, M. Ž., Marković, K. G., Morais, S. & Semedo-Lemsaddek, T. Unveiling the Potential of Lactic Acid Bacteria from Serbian Goat Cheese, Foods, vol. 13, no. 13, p. 2024. (2065).
Lando, V., Valduga, N. Z. & Moroni, L. S. Functional characterization of lactobacilli strains with antimicrobial activity against Salmonella spp. And cell viability in fermented dairy product. Biocatal. Agric. Biotechnol. 47, 102605 (2023).
Unban, K. et al. Probiotic and antioxidant properties of lactic acid bacteria isolated from Indigenous fermented tea leaves (Miang) of North Thailand and promising application in synbiotic formulation. Fermentation 7 (3), 195 (2021).
Fesseha, H., Demlie, T., Mathewos, M. & Eshetu, E. Effect of Lactobacillus species probiotics on growth performance of dual-purpose chicken. Vet. Med. Res. Rep. 12, 75–83 (2021).
Ye, Y. et al. Effects of probiotic supplements on growth performance and intestinal microbiota of Partridge Shank broiler chicks. PeerJ 9, e12538 (2021).
Shah, M. et al. Mitigating heat stress in broiler chickens using dietary onion (Allium cepa) and ginger (Zingiber officinale) supplementation. S Afr. J. Anim. Sci. 52 (6), 811–818 (2022).
Poberezhets, J. & Kupchuk, I. Effectiveness of the use of probiotics in the diet of broiler chickens. Rocz Nauk. Pol. Tow Zootech, 17, 4, (2021).
Derakhshan, M., Ghasemian, S. O. & Gholami-Ahangaran, M. The effects of probiotic and phytase on growth performance, biochemical parameters and antioxidant capacity in broiler chickens. Vet. Med. Sci. 9 (2), 860–866 (2023).
Abdel-Hafeez, H. M., Saleh, E. S. E., Tawfeek, S. S., Youssef, I. M. I. & Abdel-Daim, A. S. A. Effects of probiotic, prebiotic, and synbiotic with and without feed restriction on performance, hematological indices and carcass characteristics of broiler chickens. Asian-Australasian J. Anim. Sci. 30 (5), 672 (2016).
Bitterncourt, L. C. et al. Influence of a probiotic on broiler performance. Rev. Bras. Zootec. 40, 2739–2743 (2011).
He, Y. et al. Enterococcus faecium PNC01 isolated from the intestinal mucosa of chicken as an alternative for antibiotics to reduce feed conversion rate in broiler chickens. Microb. Cell. Fact. 20, 1–14 (2021).
Suvorov, A. et al. Evaluation of the efficacy of Enterococcus faecium L3 as a feed probiotic additive in chicken. Probiotics Antimicrob. Proteins. 15 (5), 1169–1179 (2023).
Skvortsova, L. N. et al. The use of probiotics for improving the biological potential of broiler chickens. Int. J. Pharm. Res. 10 (4), 760 (2018).
Akbarimehr, M. et al. Multi-strain probiotic improved feed conversion ratio and selected health indicators in Japanese quail. Anim. Sci. Pap Rep. 41 (4), 345–358 (2023).
Patel, S. G. et al. Effects of probiotics supplementation on growth performance, feed conversion ratio and economics of broilers. J. Anim. Res. 5 (1), 155 (2015).
Salahshour, A., Vakili, R. & Nameghi, A. H. Effect of different conditioning temperatures and times on the pellet quality, performance, intestinal morphology, ileal microbial population, and apparent metabolizable energy in broiler chickens. Brazilian Journal of Poultry Science, vol. 25, no. 3, p. 2023. (2023).
Swamy, M., Upendra, H. G., Performance, C. & Protein Ether extract and total Ash in the breast muscle of broiler chickens supplemented with probiotics. Int. J. Sci. Environ. Technol. 2, 1000–1007 (2013).
Podolian, J. N. Effect of probiotics on the chemical, mineral, and amino acid composition of broiler chicken meat. Ukr. J. Ecol. 7 (1), 61–65 (2017).
Khaksefidi, A. & Rahimi, S. Effect of probiotic inclusion in the diet of broiler chickens on performance, feed efficiency and carcass quality. Asian-Australasian J. Anim. Sci. 18 (8), 1153–1156 (2005).
Świątkiewicz, S., Arczewska-Włosek, A. & Jozefiak, D. The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. Worlds Poult. Sci. J. 70 (3), 475–486 (2014).
Niknia, A. D., Vakili, R. & Tahmasbi, A. M. Role of zinc-methionine chelate on bone health and eggshell quality in late–phase laying hens. All life, 16, 1, p. 2162609, (2023).
Nduku, X. P., Mabusela, S. P. & Nkukwana, T. T. Growth and meat quality of broiler chickens fed Moringa Oleifera leaf meal, a probiotic and an organic acid. S Afr. J. Anim. Sci, 50, 5, (2020).
Wahyono, T. et al. Thiobarbituric acid reactive substances (TBARS) and quality of poultry meat as affected by electron beam irradiation: A meta-analysis study, in Developing Modern Livestock Production in Tropical Countries, CRC, 34–38. (2023).
Djilali, B., Benmehel, B., Farouk, B. & Miloud, H. Effects of genotype and sex on lipid oxidation and fatty acid profile of chicken breast meat. Pakistan J. Nutr. 15 (2), 187 (2016).
Ahmad, A. et al. Improvement in oxidative stability and quality characteristics of functional chicken meat product supplemented with aqueous coriander extract. Int. J. Food Prop. 26 (1), 855–865 (2023).
Vakili, R., Toroghian, M. & Torshizi, M. E. Saffron extract feed improves the antioxidant status of laying hens and the inhibitory effect on cancer cells (PC3 and MCF7) growth. Veterinary Medicine and Science, 8, 6, pp. 2494–2503, (2022).
Esposito, L., Mastrocola, D. & Martuscelli, M. Approaching to biogenic amines as quality markers in packaged chicken meat. Front. Nutr. 9, 966790 (2022).
Martuscelli, M., Esposito, L. & Mastrocola, D. The role of coffee silver skin against oxidative phenomena in newly formulated chicken meat burgers after cooking. Foods 10 (8), 1833 (2021).
Mancinelli, A. C. et al. Fatty acid profile, oxidative status, and content of volatile organic compounds in Raw and cooked meat of different chicken strains. Poult. Sci. 100 (2), 1273–1282 (2021).
Vakili, R., Rashidi, A. A. & Sobhanirad, S. Effects of dietary fat, vitamin E and zinc supplementation on tibia breaking strength in female broilers under heat stress. Afr J. Agric. Res 5. (2010).
Abdulla, N. R., Sabow, A. B., Foo, H. L., Loh, T. C. & Zamri, A. M. Growth performance, fatty acid profile and lipid oxidative stability of breast muscle in chickens fed probiotics and antibiotics or their mixture. S Afr. J. Anim. Sci, 48, 6, (2018).
Wang, H. et al. Live probiotic Lactobacillus Johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Front. Microbiol. 8, 1073 (2017).
Gheorghe, A. et al. ,Effects of dietary mixture enriched in polyunsaturated fatty acids and probiotic on performance, biochemical response, breast meat fatty acids, and lipid indices in broiler chickens. Agriculture 12 (8), 1120 (2022).
Liu, L., Li, Q., Yang, Y. & Guo, A. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Front. Vet. Sci. 8, 736739 (2021).
Naeem, M. & Bourassa, D. Probiotics in poultry: unlocking productivity through Microbiome modulation and gut health. Microorganisms 13 (2), 257 (2025).
Yang, X., Bist, R. B., Subedi, S., Guo, Y. & Chai, L. The application of probiotics and prebiotics in poultry production and impacts on environment: A review. Encyclopedia 5 (1), 35 (2025).
Vakili, R. & Ebrahimnezhad, Y. Impact of dietary supplementation of unsaturated and saturated fatty acids on bone strength, fatty acids profile of thigh muscle and immune responses in broiler chickens under heat stress. Veterinary Med. Sci. 9 (1), 252–262 (2023).
Source link
Share this article:












